
The Elastic Moduli of Particulate-Filled Polymers 

P. S. THEOCARIS and E. SIDERIDIS, Department of Theoretical and 
Applied Mechanics, The National Technical University of Athens, GR-157 

73 Athens, Greece 

Synopsis 

The static and dynamic elastic moduli of particulate composites, consisting of two phases, 
one of which has isotropic4astic and the other linear viscoelastic properties, were studied. 
For this purpose a model defining the approximate equations for determining the elastic 
modulus of a composite from the properties of the constituent materials was used. Classical 
theory of elasticity was applied to this simplified model of a composite-unit cell. The following 
assumptions are made: (i) filler particles are spherical; (ii) fillers are completely dispersed; 
and (iii) the volume fraction of fillers is sufficiently small, so that any interaction among 
fillers may be neglected. A class of iron-filled epoxy composites was subjected to tests in order 
to compare the theoretical values with the experimental results. The elastic modulus calculated 
by the expression derived in this study seems to corroborate with the experimental results 
fairly well. Finally, by applying the correspondence principle to this expression, theoretical 
relationships for the dynamic storage and loss moduli were also derived. 

INTRODUCTION 

Metal particles added in polymer matrices produce composites of greater 
density, improved electrical conductivity, better thermal conductivity, and, 
consequently, improved behavior at high operating temperatures, etc., and, 
above all, highly improved mechanical properties. Metals and plastics can 
be combined in several ways to form composites, such as impregnated metal 
castings with plastics, thus reducing porosity of the metals, plastic layers 
on surface to prevent corrosion, or to introduce vibration damping, pressing 
and sintering of metal powders and powdered thermoplastics, chemical 
combinations in organometallic complexes and, finally, metal powders dis- 
persed into thermoplastic solutions or into the liquid mixture of thermo- 
setting resins and their curing agents.' 

Epoxy resins are the most suitable polymers for composite matrices, and 
extensive research has been carried out on their rheological behaviorM and 
their mechanical proper tie^.^^^ Indentation studies of these latter materials 
were also carried 

On the other hand, metal oxides and metal powders have been applied 
in the past in combination with epoxy matrices to create composites. The 
mechanical and thermal properties of such resins filled with irop particles 
have been investigated, and the effect of particle size on the same properties 
of iron-filled epoxies has been extensively s t ~ d i e d . ~ , ~  

A rigorous description of a composite system consisting of a matrix, in 
which filler particles have been dispersed, is not an easy task. In fact, a 
great number of geometrical, topological, mechanical, etc., parameters are 
necessary, the majority of which varies statistically or is simply unknown. 
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Theoretical treatments usually attempt to exploit, as much as possible, 
readily available information, which, in most cases, consists of the me- 
chanical properties of the matrix and the filler and the volume fraction of 
the latter, while suitable assumptions cover missing data. The best ap- 
proximation appears to be the determination of upper and lower bounds 
for the effective moduli of the composite, based on variational principles 
of mechanics, developed by Hashin.'O 

Analytical solutions are valid up to some fairly low filler-volume fraction, 
as they have to ignore, for reasons of efficiency, any mechanical interaction 
between neighboring inclusions. Referring, in particular, to the moduli, a 
great number of empirical or semiempirical expressions exist, which either 
express a kind of law of mixtures, or are simply an attempt to match the- 
oretical curves to experimental data. In most of them a perfect adhesion 
between matrix and filler was assumed as existing between phases of the 
composite. 

One of the theories concerning inclusions in a viscous matrix has been 
developed by Einstein." He has considered rigid-spherical nonsolvated par- 
ticles in a Newtonian viscous fluid, and he expressed the viscosity in the 
form 

EJE,  = 1 + av, (1) 

where Ec and Em are the elastic moduli of the composite and matrix, re- 
spectively, and v, is the filler-volume fraction. The constant a is equal to 
2.5. 

According to the equation of Guth and Smal l~ood, '~J~  which is an ex- 
tension of the Einstein equation, it is valid that 

EJE,  = 1 + 2 . 5 ~ ~  + 14.lvF (2) 

An equation based on a mathematical model valid for the glassy behavior 
of composites is due to Kerner,14 which, for rigid fillers, simplifies to the 
expression 

- = l + - [  Vf 15(1 - v,) ] EC 
E m  u, 8 - lOv, (3) 

where v, is the Poisson ratio of the matrix material. 
A relation taking into account the effect of adhesion efficiency between 

the two phases has been suggested by Sato and Furukawa15J6 and is ex- 
pressed by 

E m  
1--( 3 l - Y + P  

Y3k l +  y -  '11 
- 
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where Y = u ) ' ~  and k is an adhesion factor, taking the value of zero for 
perfect adhesion and the value of 1 for zero adhesion. 

On the other hand, the Mooney equation17 can take into consideration a 
number of effects of the filler agglomeration: 

- E C  = exp(-) 2 . 5 ~ f  
E m  1 - SU, 

by means of a crowding factor S, expressing the ratio of the apparent volume 
occupied by the filler over its own true volume. This factor takes values 
from 1 to 2, depending on the type of particle distribution into the matrix 
material. For closely packed spheres of a uniform size, this is S = 1.35. In 
the equation proposed by Eilers and van Dyck,18 

kv, ) 
Ern Ec ( - =  1 +  

1 - S'V, 

k and S' are constants usually equal to 1.25 and 1.20, respectively. The 
effect of filler concentration on the elastic modulus is also expressed by an 
empirical relation proposed by gills et al.,19 which is written as 

(7) 

where A and B are experimental constants. They have found that constant 
A takes the value 2.5, while B is given by 

B = -6.4 x 10-3T+ 2.51 (8) 

in which Tcorresponds to the test temperature. Thus, eq. (7) may be written 
in the form: 

2 .5~f / ( l  - Bu,) + * * (9) 1 
A semiempirical single-parameter equation describing the moduli of par- 

ticulate systems has been formulated by NarkisZ0 as follows: 

EJE, = 1/K(1 - u ) ' ~ )  (10) 

where K is an empirical parameter related to a stress concentration factor 
with usual values in the range of 1.4-1.7. 

Analytical equations for the elastic modulus of a composite containing 
spherical fillers have also been derived by Takahashi et a1.21 In the case of 
perfect adhesion they gave the relationship 

EfU - Bv,) - E,(1 - Zv,) 
Ef(1 + v,) + 2E,(1 - 2Vf) 

E C  
- = 1 + (1 - v,) 
Ern 
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On the other hand, the effect of adhesion between phases on the elastic 
modulus has been studied in Ref. 22. In this paper the concept of the bound- 
ary interphase was used in order to predict the elastic modulus of a par- 
ticulate composite. According to this theory, the elastic modulus is given 
by 

where subscript i refers to mesophase properties and k is a parameter which 
describes the degree of bonding between filler and mesophase. 

Various other equations have been developed for the plastic modulus of 
materials filled with spherical inclusions. Only a few of them but the most 
important have been presented here. 

THEORETICAL CONSIDERATIONS 

A theoretical analysis now will be based on the following assumptions: 
(i) The matrix and the fillers are elastic, isotropic, and homogeneous. 
(ii) Fillers are perfectly spherical in shape. 
(iii) Fillers are large in number, and their distribution is uniform, so that 

the composite may be regarded as a quasihomogeneous isotropic material. 
(iv) The volume fraction of fillers is sufficiently small that the interaction 

among fillers may be neglected. 
(v) The deformations applied to the composite are small enough to main- 

tain linearity of stress-strain relations. 
In order to find the relationships, which give the expression for the elastic 

modulus, it will be assumed that classical theory of elasticity is applied to 
the representative volume element, whose mechanical properties equal the 
average properties of the particulate and which can be represented by two 
concentric spheres as was used by Hashin and R o ~ e n . ~ ~  

A hollow sphere is considered with an inner radius rf = a and an outer 
radius r, = b. Let a pressure Po be applied on the inner surface and a 
pressure PI on the outer surface. This simulates the matrix. A solid sphere 
of radius rf = a, to which a pressure Po is applied, simulates the inclusion 
(Fig. 1).  Pressure Po is the interaction between matrix and filler and PI is 
the applied pressure on the matrix. Because of the spherical symmetry, it 
is advantageous to use spherical coordinates (r, 8, (p). Of the three compo- 
nents of the displacement vector u ?, u 8 ,  u,., only u, is different from zero. 

The solution to this problem is furnished by a stress function expressed 
by24 

If we apply this function for the matrix and the filler separately, we obtain 

+f = A / r  + Br2 and ( P m  = C/r + Dr2 
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Fig. 1. Loading mode of the components of the representative volume element. 

In order to avoid infinite stresses at r = 0, the constant A must take the 
value A = 0. 

Thus, 

+ f  = Br2 

The displacements are given by 

and 

The stresses are given by 

2c 2(1 + w,) 
U r , m  = - + r3 1 - 2w, 

c . 2(1 + v,) 
r3 1 - 2w, - +  (+e.rn = - 

,D c 2(1 + w,) - +  - 
r3 1 - 2w, V q , m  = 

The boundary conditions are 

at r = a, ur,f = ur,, = - Po 

at r = b, ur,, = - PI 

(20) 

(21) 

(22) 



3002 THEOCARIS AND SIDERIDIS 

The solution of this system gives the values for the constants B, C, and D 
as follows: 

-Po(l - 2Yf) 
2(1 + V f )  

B =  

(P1 - PO)a3b3 C =  

(a3Po - b3P1)(1 - 2v,) 

2(b3 - a31 

2(b3 - a 3 )  (1 + vm) D =  

If we substitute these values in Eqs. 
expressions for the displacements: 

urvf = Ef [-  ( l -  1 + 2 v f )  Vf 

(23) 

(24) 

(25) 

(13) and (141, we find the following 

(26) - Po(l - 2vf)r “1 = Ef 

The boundary conditions must account for continuity of displacements at 
the interface, and they are expressed as follows: 

for r = a , u , ,  = u, f  

With a3/ b3 = uf we obtain 

Solving this equation with respect to Po, we obtain 

PI 
3 1  - vm)Ef 

= [2uf(1 - 2v,) + 1 + v,]Ef + 2(1 - 2vf) (1 - uf)E, 

A coefficient A is defined as the ratio of Po and P1, that is 

A = Po/P, 

Then, A takes the form 

3(1 - v,)Ef A =  
[2Uf(l - 2v,) + 1 + V,]Ef + Z(1 - 2Vf) (1 - uf)Em 

The elastic modulus E, of the composite can be derived by an energy balance 
applied to the representative volume element. This strain energy, applied 
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to the composite, must be equal to the sum of the strain energies in the 
filler and matrix, that is, 

where K, is the bulk modulus of the composite. Then, the following relations 
hold for the spherical components of stresses and strains in the matrix 
material: 

-P&l - 2Vf) a3b3(Pl - Po) 1 a3Po - b3P1 - +  % f  = 
(b3  - a3) r3 b3 - a3 9 ar,rn = 

Ef  
Ee.f = ev,f = 

-a3b3(Po - PI) (1 + v,) 1 
dr (b3  - a3)Ern r3 

(1 - 2v,) (a3P0 - b3P1) - - +  du r, rn 
E , ,  = - - 

Ern b3 - a3 

If these relationships are introduced into eq. (33) with the substitutions 

a3/b3 = vf,  Po = hP1, and Kc = Ec/3(1 - 2vJ (34) 

and if all terms of the relationship are divided by 4, we obtain the final 
form for the expression of the elastic modulus of the composite: 

where the Poisson ratio p ,  of the composite may be calculated by the simple 
relation derived from the law of mixtures, which is expressed by 
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This relation is a good approximation for the Poisson ratio of the composite 
given in Ref. 25 for the case of small differences between the Poisson ratios 
of the filler and the matrix. 

APPLICATION TO DYNAMIC MODULI 

When a viscoelastic material is subjected to a sinusoidally varying strain, 
the relation between complex stresses and complex strains developed in the 
specimen is formally the same as that between stresses and strains in an 
elastic material, but the moduli are now complex quantities. Thus, any 
algebraic expression for the moduli of an elastic composite, derived from 
the fundamental equations of elasticity, also applies to the complex moduli 
of a linear viscoelastic composite with the same geometry. 

A considerable amount of work on the dynamic properties of particle- 
reinforced composites has been carried O U ~ ; ~ ~ ~ ~  therefore, a detailed review 
need not be given. Especially, the main problem is the determination of 
the dynamic properties of the composites in terms of the respective prop- 
erties of the constituent materials. Two main groups of methods have been 
developed: (i) direct methods for deriving the overall moduli of the composite 
from the micromechanical stress fields, developed around filler particles by 
means of energy considerations, for which a large number of simplifying 
assumptions are usually required,30 and (ii) methods based on the variational 
principles of elasticity, providing upper and lower bounds for the moduli.31 
While the latter method has been used for determining the complex moduli 
of viscoelastic  composite^,^^ the former one is not yet used. 

In order to find the storage and loss moduli of a particle-reinforced com- 
posite, we used the same model, described in previous sections, with a 
tranformation of eqs. (32) and (351, by applying the above-mentioned cor- 
respondence principle of viscoelasticity with the assumption that the matrix 
is viscoelastic and the filler is elastic. In this way we tried to find expressions 
for the storage and loss moduli of the composite in terms of the properties 
of filler and matrix. 

The behavior of a viscoelastic material can be described by a complex 
frequencydependent modulus EZ(w), E,* (a), where w = 27rf is the angular 
frequency. The following well-known expressions hold: 

where E,(w) and Ec(o) are the storage moduli and E'h(w) and E'h(w) are 
the loss moduli of the matrix and composite, respectively. The expression 
for the loss factor is 

tan S E  = E"/E' 

where S E  is the phase lag between stresses and strains in extension. For 
isotropic viscoelastic materials the complex Poisson ratios v z ( w )  and 
v ,*(w)  can be expressed by 

If we substitute the complex moduli in the elastic relationship between the 
shear moduli G * ( w )  the elastic moduli E*(o) and Poisson's ratios p*(w) ,  we 
derive 
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If we substitute the complex moduli in the elastic relationship between the 
shear moduli G*(o) the elastic moduli E*(o) and Poisson's ratios p *(o), we 
derive 

The solution of this system gives for vA(w) and vk(w)  the expressions 

, EAG, + EkGk  - 2(G : + Gz 
2(G: + G:) v, = 

E',,,G':, - G',E'k 
2(G: + G 3  v, = 

(37) 

(38) 

Equation (321, by applying the correspondence principle, can be written as 
follows: 

This relationship, by substitution of the expressions 

and 

B = [V A( 1 - 4 ~ f ) E f -  2(1- 2 ~ 4 1 -  u J E ~ ]  (39b) 

and after separation of the real from the imaginary parts, yields 

3Ef[( l -vL)A -vkB] A, = 
A2+B2 

and 

3Ef[(l-  v , ) B + v ~ A ]  
A2 = 

A2+B2 

(40) 

(41) 

where A* = A, + i A z  and A*2 = A: - AH + 2ihlhz. Equations (35) and (36), 
by applying the correspondence principle, can be written as 
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If we replace eq. (43) in the left-hand side of eq. (421, after some algebra we 
obtain 

with 

The first term of the right-hand side of eq. (42) can be written as 

For the second term of eq. (42) with 

and 

M = 2CA1A2-D(A$ - A;) 

we obtain 

Moreover, the third term of Eq. (42) can be written as 

which, after some algebra, gives 
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where F and G are given by 

The fourth term can be written as 

with H = (uf+2)+v,(uf-4) and K = ( 9 - 4 ) ~ : .  

expression: 
If all these relationships are substituted into eq. (42), we obtain the final 

2(PEk+QEI,I) 2(PEI,I -QE:) - - 2 ~ f ( l - 2 v f )  
R(EL2 +E:2) - R(EL2 Ef 

The solution of this complex equation gives the storage and loss moduli of 
the composite material expressed by the following expressions: 

with 

EXPERIMENTAL PROCEDURE 
In order to verify the theoretical values given by eq. (351, experiments 

were carried out with metal-particle composite materials. The matrix ma- 
terial was in all cases a cold-setting system, based on a diglycidyl ether of 
bisphenol-A resin, cured with 8% triethylenetetramine. The epoxy matrix 
was filled with iron particles of average diameter 150 pm, in order to 
produce composite specimens. The composites were manufactured in the 
way presented in Ref. 8. The properties of the constituent materials are 
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given in Table I. Dogbone specimens with constant dimensions at  the meas- 
uring area 0.006 x 0.003 m2 and length 0.045 m were used during the tests. 

Tensile measurements were carried out with a conventional Instron-type 
tester at room temperature. The specimens were tested in three different 
rates of extension (c = 0.1, 0.5, and 1.0 x m/min). Four distinct filler 
concentrations (5%, lo%, 15%, and 20%) were used in order to study the 
effect of filler-volume fraction on the elastic modulus of composites. Five 
specimens per each strain rate and per each filler-volume fraction were 
tested, and the given values correspond to their arithmetic-mean value. 

RESULTS AND DISCUSSION 
Figure 2 shows the values of the elastic modulus of the composite cal- 

culated by eq. (35) for different extension rates. We observe that the increase 
of this rate gives also increased values for theoretical and experimental 
results of the elastic modulus of the composite material. We can also observe 
that for lower filler volume fractions the experimental values are slightly 
below the theoretical values, while for higher volume fractions the exper- 
imental values begin to be above the theoretical ones. We can explain this 
phenomenon by the adhesion efficiency at the interface of the two phases. 
It is a decisive factor for the behavior of the composite. In most theoretical 
models describing the mechanical behavior of a composite material, this 
adhesion is considered as perfect, i.e., the interface can ensure continuity 
of stresses and displacements. However, such a condition is hardly fulfilled 
in real composites. In reality, around an inclusion, embedded in a matrix, 
a rather complex situation develops, consisting of areas of imperfect bond- 
ing, mechanical stresses, due to shrinkage, or even stress singularities, due 
to the geometry of the inclusion. These factors, which influence the adhesion 
efficiency, become greater when filler volume fraction is increased. So the 
theory which does not take it into account begins to give values less than 
in the reality. 

Moreover, the interaction of the surface of the filler with the matrix 
material is usually something much more complicated than a simple me- 
chanical effect. The presence of the filler restricts the segmental and mo- 
lecular mobility of the polymeric matrix, as absorption interaction in 
polymer surface layers into filler particles occurs. Although it was assumed 

TABLE I 

Elastic modulus (N/m2) 
Bulk modulus (N/mZ) 
Poisson's ratio 
Density (g/m3) 
Thermal expansion 
Coefficient (OC-9 
a1 
a2 

TETA-cured 
Iron DGEBA resin 

21.0 x 10'0 0.35 x 10loa 
16.7 X 1O1O 0.421 X 10IOa 

0.29 0.36* 
7.80 1.19 

15.0 x 
65.26 x 
168.48 x 

a Properties determined during creep tests of 20'C and time t = 15 s by means of an Instron 
tester. 



PARTICULATE-FILLED POLYMERS 3009 

I 

~ 

I 

that the volume fraction of fillers is sufficiently small, so that the inter- 
action among fillers may be neglected, in reality such an interaction always 
exists. Its effect becomes greater when filler volume fraction is increased. 

From Figure 2 we can also observe that, as the filler volume fraction is 
increased, a more linear elastic response is obtained. This kind of behavior 
is due to the filler material which is strongly elastic, so that, as its volume 
fraction is increased, the viscoelastic response of the composite is decreased. 

In Figure 3, the moduli E,, normalized to the respective moduli Em of the 
matrix material, were plotted against filler volume fraction for c = 0.5 x 

m/min. Theoretical curves obtained by other theories are also plotted 
in the same diagram for comparison. From this figure we can observe that 
the experimental results fit well with those derived from eq. (351, as well 
as the values of the theoretical curve (0, given by Kerner. The theoretical 
curves labeled A, B, D, E do not fit with the experiments. 

Thus, we can conclude that eq. (35) yields satisfactory results for the 
elastic modulus of particulate composite for low-filler volume fractions. For 
higher volume fractions its validity will be limited. For these cases a theory, 
which will take into consideration the adhesion efficiency and the inter- 
action between inclusion and matrix, is necessary in order to obtain more 
valid values of the elastic modulus of a composite material. 

The analysis presented here for the dynamic moduli may be regarded as 
a step in the theoretical prediction of the viscoelastic properties of a particle- 
filled composite material. The composite sphere assemblage model is a geo- 
metrical idealization of a real-particle-filled composite material. However, 

I 
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given that, in the elastic case, the results obtained on the basis of this model 
were close to the experimental results, it may be hoped that the viscoelastic 
results obtained by an analogous method will be of similar value. 
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